Crumb Trail
     an impermanent travelogue
email: guesswho @ guesswhere.com

Tuesday, April 04, 2006
 

Orderly behavior may need random stimuli.

While working on their model – a network of interconnected pendulums, or "oscillators" – the researchers noticed that when driven by ordered forces the various pendulums behaved chaotically and swung out of sync like a group of intoxicated synchronized swimmers. This was unexpected – shouldn't synchronized forces yield synchronized pendulums?

But then came the real surprise: When they introduced disorder – forces were applied at random to each oscillator – the system became ordered and synchronized.

"The thing that is counterintuitive is that when you introduce disorder into the system – when the [forces on the pendulums] act at random – the chaos that was present before disappears and there is order," said Sebastian F. Brandt, physics graduate student and lead author of the study which appeared in the January 2006 edition of Physical Review Letters.

The physicists' research is not only hard to grasp for non-physicists, but puzzling for physicists, too. As supervisor Ralf Wessel, Ph.D., Washington University associate professor of physics in Arts & Sciences said, "Every physicist who hears this is surprised." . .

neurons can exhibit synchronous activity in response to a stimulus. To this point, she said, nobody has come up with an adequate explanation. And Wessel said, "Maybe the details of the neurons are completely irrelevant. Maybe it is only a property of oscillators."

A vital similarity between the model system and neurons is that they are both "nonlinear" – meaning that there is not a linear, or straight-ahead, correlation between the applied force and displacement. In other words, the oscillators in the model may be likened to a child on a swing. Within a mall range, the child will move in constant proportion to how hard you push them – if you push twice as hard, they will go twice as far. But nearly all complex systems in nature, like the physicists' model, are nonlinear. Once the child gets to a certain height, pushing twice as hard will not make the child go twice as far.

Neurons are composed of many elements and are typically nonlinear.

"When you hear your favorite music twice as loud you don't double the pleasure," mused Brandt, explaining how one aspect of the brain – hearing – is nonlinear.

While other research has shown that disorder can create order, these studies often involved manipulating parameters within the systems such as changing pendulum length. The researchers say that their work is novel because it involves changing externally applied forces. Thus, they believe, their findings might have potential in the real world, where it would be more difficult to change parameters within the system – neurons, for example – but relatively simple to apply an external forcing.

"This is of course basic research," said Brandt. "But what you can learn from this is that complex systems... sometimes behave in a very unexpected way, completely opposite to your intuition or expectation. … It will be interesting to see if the mechanism that we have found can actually be put to some use."

posted by back40 | 4/04/2006 01:00:00 PM

1 Comments:

Right off the top of my head, I can imagine using random ocean waves to force regular motions for an electric generator...

By Anonymous Anonymous, at 1:54 PM  

Post a Comment


Recent
Resources
Open Access
People
News
Tools
Blogs
Archives

Technorati Profile